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Low-temperature behavior of core-softened models: Water and silica behavior
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A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures.
The model shows two qualitatively different behaviors depending on the strength of the attraction between
particles. For no or low attraction, the changes of density as a function of pressure are smooth, although
hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing
and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic
first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to
the different phenomenology observed in silica and water.
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[. INTRODUCTION for no particular value of pressure there is a sudden change
in density that could be interpreted as a direct evidence of a
The recently acknowledged possibility of the existence offirst-order transition.
single component systems which display coexistence be- It has been argued that the qualitatively different behavior
tween two different liquid phases has opened many interesbf water and silica is due to the temperature at which experi-
ing questions, and shed new light into the study of thements are carried out compared to the glass temperature
anomalous properties these systems disfilay8]. The case of the materialg11,8,13. WhereasT/T, is about 0.1 for the
of water is probably the most intensively studied, due to itsexperiments in silica, it is close to 1 for water. Some people
ubiquity in nature. There is by now a general consensus thdtave raised the expectation that if compressing experiments
water displays a transition between two different amorphousvere done in silica at temperatures near or abbye they
states in the supercooled region of its phase diagrén would reveal the first-order transition, which is supposed to
Experiments carried out in water dt=130 K show an be hidden in the ambient temperature experiments due to
abrupt change of volume as a function of pressur®, lack of thermodynamic equilibrium.
which indicates the existence of the first order transifoh We will not study the actual behavior of water and silica,
The v(P) curve is hysteretic, and the jump inoccurs at nor even of the numerical models that have been used to
P=0.3 GPa upon compressing, and R#=0.05 GPa upon simulate then. Instead, we will study a very simple model of
decompressing. The volume change at the transition is aboatglass former at low temperatures, including the limiting
0.2 cn?/g. The two amorphous phases of water are smoothly=0 case, in different regions of the parameters to gain quali-
related to two different liquid phases at higher temperaturedative insight into the problem. The model consists of par-
which at coexistence determine a first order liquid-liquidticles interacting through a potential with a hard core plus a
transition line ending in a critical point, located in the meta-soft repulsive shoulder. In addition, an attractive contribution
stable region of the phase diagram. Most of the anomalies db the interaction can be included. This kind of model is not
water are usually interpreted as a consequence of the exighrealistic for the study of the properties of tetrahedrally
tence of this liquid-liquid line and the liquid-liquid critical coordinated materials, and in fact it was shown to reproduce
point, but in general the existence of liquid-liquid coexist- many of the anomalies these materials pos$ésk3]. We
ence is not a necessary condition for the existence of most ofill show that when there is no attraction between particles
the anomalie$6]. (or only a weak ong implying in particular that there is no
Water is not an isolated case. There is a whole family offirst order transition, the (P) curve of our model in simu-
substances, usually referred to as tetrahedrally coordinatddtions atT=0 shows an hysteretic behavior, which is asso-
materials, that display many of the anomalies of war  ciated to the existence of different mechanically stable con-
Within this family, another particularly interesting case is figurations, and qualitatively agrees with the known
that of amorphous SiQ(silica). Many of the anomalous phenomenology of silica. The inclusion of a sufficiently
properties of water are also found in silica. Some of thenstrong attraction may produce the appearance of a first-order
have been observed in experimefds the density anomaly transition, which is clearly observed even in simulations at
and others only in numerical simulations up to ngas T=0, in the form of a global mechanical instability. The
maxima of isothermal compressibility and diffusivity as a form of v (P) we obtain in this case is very similar to what is
function of pressurg8]). This has led to think that possibly a found in water.
first-order amorphous-amorphous transition also occurs in These findings will lead us to propose a different scenario
silica. But evidence of this transition has been elusive. Exto place together the properties of water and silica. We sug-
periments at ambient temperature in silica show an irreversgest that the first-order transition in water will be observed in
ible increase of density when the system is compressed up the form of a mechanical instability even in experiments at
P=20 GPa and successively decompred§4dThis behav- T—0. On the other hand, we suggest the possibility that a
ior is reproduced in numerical simulatiof$0]. However, first-order transition in silica is not observed because there is
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the value of the external pressure. The attractive part of the
Iy potentialU” is simply given by
80
1r R - ~
UA=gg=a(r—b) for Tr<b,
r
oF
UA=0 for T>bh. )
0

with the two dimensionless parametdrsand « fixing, re-
spectively, the range and intensity of the attraction. Two ex-
amples of the potential with the attraction tefthose to be
used in the simulationsare also shown in Fig. 1. In all the
results to be presente@orresponding to two-dimensional

systemy we user,=0.45, and rb=0.5§ Temperature
will be measured in units ofeokgl, pressure in units of

FIG. 1. The interparticle potenti&l (r) without attraction(con-
tinuous ling and for two different choices of the attractive part. In

this plot, the valueR=r was assumed.

not one, and that experiments performed in silica rnkar
will not reveal new qualitative ingredients. It is worth notic- T ) I
ing that the existence of the thermodynamic anomalies ofoKs T~ “, and volume in units of “.

silica does not contradict this interpretation, since a liquid- We simulate the system by standard Monte Carlo tech-
liquid critical point is not necessary to observe those anomabiques, using Metropolis algorithm. Particles are placed in a
lies, as it is known from studies in models closely related toP0X With periodic boundary conditions. At each time step the
the present ongs]. position of a single particle is modified to a new position

The paper is organized as follows. The model and detailsvhich is randomly chosen within a sphere of radius (.01

on the simulation procedure are presented in Sec. Il. Theentered at the original position. This trial movement is ac-
results are contained in Sec. lll, and the relevance of them toepted according to the Metropolis rule. The update is made
silica and water is presented in Sec. V. Section V containsequentially for all particles. Results using constant pressure

the summary and some final comments. simulations and others at constant volume will be shown. In
the constant pressure scheme, the volume of the system is
Il. THE MODEL considered as an additional Monte Carlo variable, and homo-

geneous expansion and contraction of the coordinates of all
The model we study is defined as follows. We consider garticles(and also of the size of the simulation bate tried.

bidisperse set of spherical particles, in order to avoid crysThis permits the volume of the system to adjust to the given
tallization. Particlei is characterized by the value of a pa- external pressure. In constant volume simulations, pressure is
rameterr;, which is taken from a bimodal distribution, i.e., calculated as minus the energy change divided the volume
ri=r,, or ry=r,, with equal probability. The interaction change in a smallvirtual) homogeneous rescaling of all co-
potential U between particles and j depends omr=r/R  ordinates of the particles.
wherer is the real distance between particles, d@Rer'
+r!. The potentialU is composed of a repulsive and an . RESULTS

attractive partU=UR+UA. The form we use fouR is . . . .
partU We will show results for a two-dimensional system. This

is done to allow a better visualization of the configurations,
however we emphasize that all the results we discuss were
qualitatively reobtained in three-dimensional systems. We
start by showing results in the case of no attractiar=(Q),

UR=w for T<1,

UR:SOrZ ] +1.2-1.8r—-1.1)* atT=0. Note thafT=0 Monte Carlo means that trial move-
ments of the particles are accepted if and only if they do not
for 1<7<1.9202 increase the energy of the system. Particles are randomly

placed in space at the beginning of the simulation, and the
R ~ system is rapidly compressed up to reaching a mechanically
U®=0 for r>1.9202, (1) stable configuration @~0.5, v~3.2. ThenP is increased,
o or v is decreased@depending on the type of simulatigrisy
wherer is the mean radius of the particldgR is plotted in  small steps. Mechanical equilibrium is obtained at eRet
Fig. 1. The form of this potential is a smooth version of avalue. In this way we reacR~4, v~1.5. Then we slowly
potential that we have studied in detail previou§6;14]. expanded the system to the original values*andv.
This smoother form is preferred here in order to avoid am- We see in Fig. 2 the values Bfandv during this process,
biguities in the calculations &t=0, that appear in case the both in simulations at constafan at constant for a sys-
forces are not continuous. The particular analytical form weem of 200 particles. The curves show a series of small
use is not really important, the only crucial feature of thethough abrupt changes inor P (depending on the kind of
potential is the existence of two preferred distances betweesimulations that correspond to mechanical instabilities in the
particles ¢€;,~1.1R andr,;~1.9R in Fig. 1) depending on system[15]. Also the hysteresis in(P) we observegwhich
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FIG. 4. v(P) curve as in Fig. 2, for systems with 200 and 1000
particles. Fluctuations tend to average out in the larger sample, but
the overall hysteresis remains the same as in the case with fewer
particles. Units as in Fig. 2.

FIG. 2. v(P) function for the system without attraction, &t
=0. Results of simulations at constdhand constant are shown.
Also shown are the values of=dh/dP, from the constan® simu-
lations. Differences betweanandy reveal lack of thermodynamic ) ) )
equilibrium. Pressure is given in units efks ' 2, and volume in ~ Simulations the disordered nature of the system produces a
units ofr 2. smoothing ofv(P). In the two particle problend=oh/JF

equated except by the existence of two delta peaks at the

we found is repetitive upon compressing and decompressin@Cints where there is a jump im This is the energy being

though only one cycle is shown in Fig) Briginates in the dissipated. In the numerical simulations there is an averaging
existence of mechanical metastabilities in the system. APver many different atomic environments, and the delta
indication of this fact can be obtained from the following Peaks are smoothed, but still clearly visible as regions where

arguments. Let us define= oh/9P, whereh=e+ Py is the v <v during compressing, ar>v during decompressing in
enthalpy per particle of the system as obtained from théig. 2. o o

simulations. If the system was in thermodynamic equilibrium ~ The mechanical instabilities in the system are of a local
we should obtaif = v, since this is a thermodynamic iden- nature, in the sense that they produce noncorrelated rear-
) L X ) rangements of particles as pressure or volume changes. Then
tity at T=0. We plotv (from the constanP simulation$ e expect the small reentrances in the conatasimulations

also in Fig. 2. We see that there are systematic differencegq; signal the existence of these instabilities to become
betweerv andv, particularly in the region where changes  weaker in larger samples, since they are averaged over the
rapidly. The difference betweenandv is due to mechanical whole system. In fact, as an indication of this, we show in
instabilities upon compressing and decompressing that prd=ig. 4 results for a system of 1000 particles, as compared to
duce energy to be dissipated in the process. A very simpléhe case of 200 particles, and we see that “fluctuations” are
example is illuminating in this respect. For two particles in-considerably smaller. The global amount of hysteresis, how-
teracting with the potential of Fig. (continuous lingat T  ever, remains quite the same. Figure 5 shows snapshots of
=0, the evolution of distance (that replaces volume in this the 1000 particles system at the points indicated in Fig. 4.
case and enthalpy as a function of the compressing folge  Figure 6 shows the corresponding radial distribution func-
(that takes the role of pressiiie shown in Fig. 3. The me- tion. We see that as the pressure increases and volume de-
chanical hysteresis id(F) is precisely the same effect we
observe in the simulations, the only difference is that in the

FIG. 3. Distanced (a) and enthalpyh=U+Fd (b) for two C D
particles interacting with the potential of Fig(dontinuous ling as
a function of the compressing forde Compressing and decom- FIG. 5. Snapshots of the system at the points indicated in Fig. 4.
pressing routes are indicates. Dot size represents the hard core of the particles.
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FIG. 8. v(p) curve obtained as the limit—0 of individual
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FIG. 6 RaQ|aI dlstrlbuu.on fgnctlonS(r) (|p units of r =) of simulations at constant volun{iarge full symbol$, and calculated
the configurations shown in Fig. 5. The weight transfer between-=(9h/apf thehval btained in th imulatic
ro~1.1Randr;~1.9R s clearly visible(the triplet structure of the v= rom theh values obtained in the same simulatiecapen

peaks originates in the bidispersity of the system symbol$. Within the numerical errors we get=v, is it should be
in thermodynamic equilibrium. The compressing-decompressing

. . . loop of Fig. 4 is also shown to allow comparison. Units as in Fig. 2.
creases more and more particles move from a typical dis-

tancer;~1.9R between neighbors to the shorter distance ] ) .

ro~1.1R The collapse of neighbor particles framtorgis N Fig. 7. For the values of(P) obtained in the annealing

not a collective effect, it occurs in a noncorrelated way inSimulations, the thermodynamic relation=dh/dP is well

different positions of the Samp|e, name|y’ no abrupt transi_sat|sf|ed within the numerical err0(§|g. 8) The values of

tion exists. v(P) obtained in the annealing process are inside the loop of
From the two particle problem we see an interesting charcompression-decompression, as it could be expected for the

acteristic of then(F) curve. The values di in the compress- €quilibrium values, since the hysteresis loop represents the

ing and decompressing branches cross each (MQV_/SO maxi_mum amount of mechani_c_al metgstability that the sys-
~2.3). This crossing is also observed in the complete simuleM 1 able. to sustain. In addition(P) is continuous, and
lations. In fact, in Fig. 7 we see values lobbtained during this is ponS|stent Wlth the lack of a thermodynamic first-order
compression and decompression, in the simulations at cofransition 5!”:0 in our mode_l. . .

stantP (all results are for a system of 1000 particles, from To obtain a therr_nod_ynamlc f|_rst-order transition, and to
now on. We see clearly a crossing of the two branches ag,tudy the way in which it reflects in the compression decom-

aboutP=1.8. This crossing has no profound physical meanPression results af=0, a certain amount of attraction be-

ing, and in particular it does not indicate the existence of Jween particles must be included. The existence of attraction

first order transition between compressing and decompresgﬂ-I the system may have profour_1d effects in its _phase_ behay-
ing branches, since these are not the thermodynamic values W? will first discuss anglypgally the case in which an
of the free energy, and the states accessed during compr traction energyy(r)_<0 of infinite range Is added to the
sion and decompression do not exhaust the whole phaégterpart|cle energy '.n.CIUdEd' In_thls. case, the energy per
space of the system. To show this in more detail, we madgarnclee gets an additional contributiofie of the form de

simulations in which the system was annealed at fixed vol—J vS(r) ¥(r)dr, S(r) being the radial distribution function.
he assumed limit in which the range ¢fr) goes to infin-

ume, trying to get as closer as possible to the real groun . i A .
state of the system at eaéh The final values of that we ity, correspor_ld_s_to the case in which this m_tegrgl IS governed
get asT—O0 at differentP are shown in Fig. 8. Although we only by the limiting valu_e ofS(r) asr—, i.e., ',t will de-
cannot guarantee that the true ground state was obtained, tRENd Only on the density of the system. In this ceS)
values ofh(P) in this case are systematically lower than itself is not a~ffected by the attractlog term. Thémtakes the
both the compression and decompression ones, as we can $6en ée=— y/v with some constany>0. This term is di-
rectly added to the free ener@y of the system. When com-
T T puting the equation of state froaG/Jv =0, the only differ-
ence with the case without attraction is thatn the state

h/e equation is replaced bp+7/v2. Then from the results of
0 the simulations without attraction we can immediately get
those for a system with an attraction that has infinite range,
o— decompressin just rescalingself-consistently the pressure axis through

4 —s— from annealin HP+§//v2. The result of this procedure is shown in Fig. 9.
15 p 20 We see that due to the volume-dependent rescalifty ahd
to the form of thev (P) curve with no attraction, a reentrance

FIG. 7. Evolution of enthalpy as a function of pressure during N v(P) may appear if the attraction is higher than some
compression and decompression, and from individual simulationgninimum. The reentrance in the thermodynam(®) curve
annealing the system at fixed pressure. Compressing and decorfidicates the existence of a first-order transition between two
pressing branches cross each othePat1.8, but the thermody- amorphous phases of different densities. This reentrance ap-
namic values are always lower. pears also for the compressing and decompressing branches,

—e— compressing

061509-4



LOW-TEMPERATURE BEHAVIOR OF CORE-SOFTENED. .. PHYSICAL REVIEW & 061509

T T T

—— Constant P
simulations |

—o— Constant v
simulations

Mean field 7]

00 05 10 15 20_25
P

FIG. 9. The effect of an infinite range attraction of different ~ FIG. 10. Full simulations with an attraction term of the fot®)
intensities on the (P) curves of Fig. 8. A reentrance, indicative of with b=4, and«=0.15. Constant pressure and constant volume
a first-order transition is observed for the two largest valuey.of ~Simulations are shown. The mean field regirifinite range attrac-
For 7=9 the first-order transition is moved into the metastale tion) with y=3.1e,r* is shown for comparison. Note the abrupt
<0 region. Large symbols are tifialmos thermodynamic values, Cchange in the constaifit simulations, and the weak reentrances of
and small symbols are the compressing and decompression resultge constant simulations. These are mechanical instabilities that
The position of the spinodal poin&andC’ upon compression and indicate the existence of a thermodynamic first-order amorphous-

decompression is also shown in the c&se? Units as in Fig. 2 amorphous transition in this case, which is made evident in the
' "7 equilibriumuv(P) curve atT=0.09. Units as in Fig. 2.

basically at the same value gf This means that in this case ) ) )
the mechanical instability at zero temperature exist if and @=0.1 in Eq.(2)], we getv(P) curves which are slightly
only if the system has a thermodynamic first-order transitiofnodified with respect to the case of no attraction, but no
at T=0. Then the global mechanical instability upon com- dualitatively new result_s appear. But if the attraction is
pression and decompression as pressure passes through $i@Ng enough, we obtain signs of global mechanical insta-
spinodal points at whictiv/ap becomes infinity(pointsc ~ bilities and ~a first-order transition. The results of
andC’ in Fig. 9) is an indirect observation of the first-order COmpression-decompression simulations are illustrated in
transition. We emphasize that in the present case the inst&ld- 10 fora=0.15. We see that constamtsimulations get
bility is global, in the sense that once it occurs, it involves a2 région(for 1.8<v<2.4 upon compressigmwith small re-
finite fraction of the whole system, contrary to instabilities in €ntrances in the calculated valueshofin turn, in constanP
the case without attraction, which are associated to indiSimulations we see an abrupt collapse of volume that jumps
vidual particles. We note that for a truly infinite range attrac-in @ finite. amount. This jump signals the occurrence of a
tion (more precisely, if the range of the attraction is muchglobal mechanical instability. For comparison, we also plot
larger than the system sizéhe loop inv(P) when thereisa " Fig. 10 the resulti of the mean field case, with an infinite
first-order transition is physical, namely, it is observable inrange attraction withy=3.1,r*. We can see that the mean
constant volume simulations, and no Maxwell constructionfield result is quite similar to the numerical result at constant
can be invoked to flatten it out. In constaRtsimulations Vvolume. The effect of the finite range attraction can be seen,
instead, we would get an abrupt volume change when we gbowever, in the snapshots of the system when going through
through the pressure corresponding to the spinodal pointghe coexistence regioffig. 11). Indeed, they show bubbles
and this is what we are referring to as a global mechanicadf the denser amorphous phase appearing in the system as
instability. From Fig. 9 we also see that the position of thevolume is reduced. This does not happen in the mean field
first-order loop moves towards lower pressures as thease. Note the difference between the configurations in Fig.
strength of the attraction is increased, and then it can bé&l, and those with no attraction during compression and de-
completely moved into the metastalite<0 region when the compressior{Figs. 5B) and §D)]. Here the particles that
attraction is strong enough. Notice also that in cases in whickollapse to the new phase tend to form well defined clusters
the compressibility anomaly of the purely repulsive modelin the sample, whereas in the other case the system remains
(the rapid change in volume arour®~2 in our casgis  uniform.
weaker, it may happen that no first-order transition appears
at all, for any value of the attraction.

The previous analysis tells us that in the case of a long
range attraction, the existence of a first-order thermodynamic
transition and mechanical instabilities in the compression-
decompression path @at=0 are closely related, each of them
implying the existence of the other. We want to analyze now
to what extent this scenario can be extended to the case in
which the attraction is short ranged. Then we conducted
compressing-decompressing simulations using the finite FiG. 11. Snapshots of the system at the points indicated in Fig.
range form(2) of the attraction. We first use a rather large 10. Note the coexistence of rather large clusters of two different
value b=4 for the attraction range, expecting to reobtainphases with different densities, as for instance in the encircled re-
basically the mean field phenomenology. For weak attractiogions (compare with Fig. &
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—e— Constant P a first-order transition, we have observed that the global me-
simultions ] chanical instability still exists.

—o—Constant v

. simulations
L —%— T=0.09

. IV. UNIFYING THE SILICA AND WATER
PHENOMENOLOGY

! n Silica and water display many anomalous thermodynamic
P behavior. They include the well known density anomédy
) temperature at which density is maximynsompressibility

FIG. 12. Same as Fig. 10, but for=2.2, anda=1.0(see Fig.  anq specific heat anomalies, and diffusivity anomalies. These

1 for a sketch of the potential anomalies do not require the existence of a first-order liquid-

liquid or amorphous-amorphous transition to exist. In fact,

In this case in which the attraction range is rather large webasically all of them are found in the present model with no
expect the mean field arguments of the previous section tattraction, i.e., when we can be sure that there is no first-
apply, and then that the system Hasaddition to the global order transitior[6].
mechanical instabilities at zero temperajuee thermody- Experimental and numerical evidence suggests that water
namic phase transition at sufficiently low temperatures. Tqossess a first-order liquid-liquid equilibrium at low tem-
check directly for this transition is of course not an easy taslperatures. Experimental evidence of a first-order transition in
in general, but for the current parameters it turns out that theilica is lacking. The present model shows that hysteresis in
transition is still observable in equilibrium simulations at fi-  (P) curves is by no means a strong evidence of a first-order
nite temperature, and then we can be sure that it will persiskansition if a global mechanical instability is not observed.
down to zero temperature. In fact, théP) function in con-  And in fact, experiments show that silica is globally stable
stantv simulations aff =0.09 is also plotted in Fig. 10. We upon compression and decompression, although displaying
see that hysteresis upon compressing and decompressing hg&teretic behavior. Some numerical evidence of a first-order
completely disappeared, as it should be since we are in thetransition in silica has been presented. In one case, however,
modynamic equilibrium. Thev(P) curve has an abrupt [12] the evidence was just the crossing of the free energies
change atP~0.75, signaling the existence of a two phaseobtained during compression and decompression simulations
coexistence region, and then a first-order transition. at T=0 of model silica. This was erroneously attributed to

Next we simulated a case in which the attraction is muchan underlying first-order transitiofi.6]. As we showed in
shorter ranged, specifically, we used the attraction f@m our model this crossing occurs whether there is a first-order
with b= 2.2 anda=1.0 (the interaction potential in this case transition or not, and it is due to microscopic metastabilities.
can be seen in Fig.)1For these parameters we are still able More serious evidence come from the simulations by Voivod
to detect the existence of the first-order thermodynamic tranet al.[17]. They use two different numerical models of silica
sition in simulations at finite temperature. In Fig. 12 we plotand extrapolate high-temperature results to zero temperature,
the v(P) curve atT=0.09, in which hysteresis has disap- finding evidence of a first-order transition. Still, the results
peared, and signs of a first-order transitionPat 0.55 are are preliminary, and based on extrapolations that call for
apparent. The compression-decompression curvie=dd is  more detailed study.
shown also in Fig. 12. We see that in this case in which the We have shown that a very simple and transparent model
attraction is much shorter ranged, the signs of global mehas or has not a first-order transition depending on the
chanical instabilities are still clearly observable. Note alsostrength of the attraction that is included. We have shown
that in this case, the decompressiorPte 0 (in the constant simulations in which a mechanical instability B0 and a
P simulationg was such that the system was not able tothermodynamic first-order transition exist. The mechanical
regain its initial density, and remains in a densified structurénstability is qualitatively similar to that found in water in
(in the constant volume simulations the system reaches asxperiments aff ~Ty. This leads us to expect that water
state of negative pressure, which of course should be considrust display the same instability even in experiments at
ered as metastable with respect to a gaseous phase much lower temperatures. To confirm this expectation it

Let us briefly summarize the numerical results we havewould be interesting if some of the models that are used to
presented, before going to their relevance to understand ttemulate water, and that have shown liquid-liquid coexist-
phenomenology of water and silica. For the case of no atence, were tried in the limit of zero temperature to look for
traction between particles thgP) curve at zero temperature the mechanical instability, or even if compression decom-
shows hysteresis upon compression-decompression, whichpsession experiments were done in water at much lower tem-
originated in local mechanical metastabilities. The thermodyperatures.
namic v(P) in this case is smooth and globally stable In the case of a long-range attraction between particles,
(dvldP<0). When an attraction of sufficiently long range is we have shown that a thermodynamical first-order transition
included, and in the case this is stronger than some minimurand global mechanical instabilities are closely correlated. In
value we get both a thermodynamic phase transition and glazases in which attraction is short ranged, and when the first-
bal mechanical instabilities aT=0. For attractions of order thermodynamical transition is observable in equilib-
shorter range, and in cases we can guarantee the existenceriofim simulations, we have still observed global mechanical
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instabilities. We have not been able to identify a set of pa- V. SUMMARY AND CONCLUSIONS
rameters for our model where a thermodynamical transition
occurs in the lack of global mechanical instabilities. But thisflui
may be due to our incapacity of detecting a thermOd_yn"’“ni(f‘epulsive shoulder, and some amount of attraction. We in-
first-order transition at very low temperatures when this tranyegtigated to what extent the existence of global mechanical
sition does not show up at temperatures at which equilibriunygtapilities atT=0 is correlated to the existence of a ther-
simulations are possible. . modynamical first-order transition between two amorphous
On the basis of the present results we consider that thghases. We have obtained that the model without, or with
two possible scenarios for silica are the following. It mayweak attraction between particles does not display a first-
happen that silica does not have a first-order transition. Ousrder transition or global mechanical instabilities. This be-
results for zero or low intensity attraction correspond in facthavior coincides with the known phenomenology of silica. In
to a case in which a first-order transition does not exist, anthe presence of a strong attraction between patrticles, both a
the phenomenology we obtain is closely related to that ofirst-order amorphous-amorphous transition and global me-
silica [18]. Still, the other open possibility is in fact that chanical instabilities af =0 were obtained. This scenario
silica has a first-order transition but this is not reflected in thecorresponds to the behavior of water. Our work suggests that
zero temperature compression-decompression experimentbe difference between the phenomenology of silica and wa-
In this respect again, it would be nice if the numerical mod-ter may be related to the lack of an amorphous-amorphous
els used for silica that seem to posses a first-order transitiofiansition in silica, in opposition to the existence of this tran-
(and in case in fact this is confirmedere used alT =0 to siti'on'in water. This is not incompa;iblg with the existence of
search for a global mechanical instability. If this is obtained,coincident thermodynamic anomalies in both cases.
then those models will be shown to be no reliable to describe
silica in this limit, since we know real silica does not have
this instability. If the model does not show a mechanical This work was financially supported by Consejo Nacional
instability instead, this would indicate that the correlationde Investigaciones Ciefitas y Tenicas(CONICET), Ar-
between mechanical instabilities and a first-order thermodygentina. Partial support from Fundagidntorchas is also
namical transition is not universal. acknowledged.

In this work we have studied a model of a glass forming
d, consisting of spherical particles with a hard core, a
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